Note

PHYSICO-CHEMICAL STUDY OF Ge(Pb)Te-Bi₂(Sb₂)Te₃ SYSTEM TERNARY COMPOUNDS

A.S. SKOROPANOV, B.L. VALEVSKY, V.F. SKUMS, G.I. SAMAL and A.A. VECHER

Research and Development Institute of Physico-chemical Problems of the Byelorussian State University, 220080 Minsk (U.S.S.R.)

(Received 31 January 1985)

In the Ge(Pb)Te-Bi₂(Sb₂)Te₃ system, the interaction of binary tellurides leads to the formation of a number of ternary compounds [1-3] (given in the tables), which are characterized by a layer structure (phases of the same stoichiometry are crystallized in one structural type) and are prospective for the construction of semiconductor devices. The physico-chemical characteristics of GeTe, PbTe, Bi₂Te₃ and Sb₂Te₃ are summarized in detail in a number of publications, but the properties of ternary intermetallic compounds at high temperatures are scarcely described in the literature.

The aim of this paper is to conduct a complex thermal analysis of $Ge(Pb)Te-Bi_2(Sb_2)Te_3$ system ternary compounds.

EXPERIMENTAL

The investigations were carried out using a quantitative differential thermal analysis (DTA) and dilatometric analysis methods, by means of tripleheat-bridge and solution calorimeters and the X-ray method [4–8]. We determined the formation enthalpies of substances under standard conditions (ΔH_{298}^0) and in the liquid state (ΔH^{hq}), their heat capacities (C_p), relative elongations ($\Delta l/l_0$), temperatures (T^{fus} and T^{tr}) and heats (ΔH^{fus} and ΔH^{tr}) of fusion and phase transitions. All measurements were carried out several times; ΔH_{298}^0 and ΔH^{hq} were determined by a number of methods [7,8].

The accuracy of the data obtained was evaluated by comparison with those in refs. 1-3, 9 and 10; the divergence did not exceed 2%. Tables 1 and 2 summarize errors in the reproducibility of characteristics for the 0.95 significance level.

Ternary tellurides were synthesized as in ref. 8.

I						
Ge(Pb)Te-	$-\Delta H^0_{298} \pm 4 - 10\%$	$T^{ m tr} \pm 1\%$	$\Delta H^{ m tr} \pm 2\%$	$T^{fus}\pm 0.2\%$	$\Delta H^{\rm fus} \pm 2.5\%$	$-\Delta H^{\text{liq}} \pm 5\%$
Bi ₂ (Sb ₂)Te ₃	$(kJ mol^{-1})$	(K)	$(kJ mol^{-1})$	(K)	$(kJ mol^{-1})$	$(kJ mol^{-1})$
1) PbBi ₄ Te ₇	223	550-555		851, 861	292	130
2) GeBi 4Te7	191	650	2.1	847	263	123
3) GeSb4Te7	140	673	I	880	240	110
(4) PbBi ₂ Te ₄	150	618	I	864	154	90
5) GeBi ₂ Te ₄	114	668	0.3	860	139	71
(6) GeSb ₂ Te ₄	90	678	I	888	142	70
7) $Pb_{2}Bi_{2}Te_{3}$	225	630	I	858	185	150
(8) $Ge_3Bi_2Te_6$	234	650-670	2.1	858, 919	(213)	(125)
(9) Ge ₂ Sb ₂ Te ₅	(130)	673	I	860, 877, 914	(187)	(100)

Thermodynamic properties for Ge(Pb)Te-Bi $_2$ (Sb $_2$)Te $_3$ system ternary compounds

TABLE 1

RESULTS AND DISCUSSION

The results obtained are summarized in Tables 1 and 2.

As one can see from Table 1 the formation of ternary melts with the compounds' composition is accompanied by a significant enthalpy decrease, which suggests the possibility of two- and three-component associations existing in them. X-ray analysis of the telluride samples quenched 20-30 K above the T^{fus} values (Table 1) showed that the fusion of compounds 8 and 9 had an incongruent character (a complex endothermal peak on the DTA curves with a number of T^{fus} values corresponding to this process) and phases 1-7 did not decompose during fusion. On the basis of comparing experimental and additive fusion entropies and admitting that fusion of phases 1-7 is congruent, we made an assumption that the fusion of compounds 2, 3, 5 and 6 proceeds without changes in their conductivity type, but for tellurides 1, 4 and 7 it proceeds with their partial metallization.

As it follows from Table 2 within the range 350–650 K a slight increase or decrease in C_p takes place (for phases 1, 4 and $7\Delta C_p$ values are very close to zero), and for compounds 1, 2, 4, 5, 7 and 8 around T^{tr} (see Table 1) the heat capacity is of an anomalous character [6]. Around T^{tr} one can also observe a $\Delta l/l_0$ anomalous temperature dependency (including compounds 3, 6 and 9). These facts indicate that for the above substances thermostimulated first-order state transitions occur. The reproducibility of C_p and $\Delta l/l_0$

$\overline{\text{Ge(Pb)Te-}}$ Bi ₂ (Sb ₂)Te ₃	$\frac{\Delta l/l_0 \times b \times 10}{(\pm 5\%)}$	$\frac{10^6 = -a}{10^{-2}T}$	Δ <i>T</i> (K)	$C_{p} = a + c \times 10$ (J mol ⁻¹)	$b \times 10^{-3}T$ $b^{-6}T^{-2}$ K^{-1}) (±2.	5%)	Δ <i>T</i> (K)
	a	b	-	a	b	с	
$\overline{(1) \text{ PbBi}_{4}\text{Te}_{7}}$	5.5	18.5	300-540	351.8	11	-	350-520
	11.4	38	550-800				
(2) $GeBi_4Te_7$	5.91	20.17	290-710	293	71.1	-	350-630
(3) $GeSb_4Te_7$	5.52	18.44	290-673	508.9	- 282.5	7.47	350-630
	7.91	21.76	688-800				
(4) $PbBi_2Te_4$	5.1	16.4	290-610	-	_	-	
	_	0	630-730				
(5) GeBi ₂ Te ₄	5.32	18.16	29 0-660	176	50.2	-	350-650
	6.43	22.44	680-780				
(6) $GeSb_2Te_4$	5.49	18.44	290-670	323.6	-195.2	5.95	350-630
	4.9	16.93	700-820				
(7) $Pb_2 Bi_2 Te_5$	6.5	17.3	290-620	-		_	-
	-	0	640-720				
(8) $\operatorname{Ge}_3\operatorname{Bi}_2\operatorname{Te}_6$	4.83	16.47	290-670	270	20.9	-	350-580
	10.08	23.86	680 - 800				
(9) $Ge_2Sb_2Te_5$	5.79	19.4	290-670	401.66	-230.2	6.68	350-630

TA	BL	E	2
----	----	---	---

Thermophysical characteristics for Ge(Pb)Te-Bi₂(Sb₂)Te₃ system ternary compounds

on the cooling and subsequent heating-cooling cycles of the samples and the results of X-ray analyses of samples quenched at temperatures 10-20 K above T^{tr} confirm the reversible character of these transitions.

Mutual recalculation (according to Hess's law) of the thermodynamic values determined for $Ge(Pb)Te-Bi_2(Sb_2)Te_3$ ternary phases agreed within the calculation error.

Using data on ΔH^{liq} from Table 1 we determined correction term values of the semiempirical models of Sharkey-Pool-Hoch and Redlich-Kister for the thermodynamic prediction of ternary solutions [11,12]. We then found the type of concentration dependence of the formation enthalpy of Ge-Bi-Te, Ge-Sb-Te and Pb-Bi-Te liquid alloys over the whole concentration triangle field, which agrees with the results of refs. 9 and 10 within calculation error. Similar evaluations may be carried out to determine ΔH_{298}^0 values for the whole variety of Ge(Pb)-Bi(Sb)-Te ternary solid alloy compositions.

REFERENCES

- 1 N.H. Abrikosov and G.T. Danilova-Dorbriyakova, Sov. Inorg. Mater., 1 (1965) 204.
- 2 B.K. Vainshtein, R.M. Imatov and A.G. Talybov, Sov. Crystallogr., 14 (1968) 703.
- 3 N.H. Abrikosov and G.T. Danilova-Dorbriyakova, Sov. Inorg. Mater., 1 (1965) 57.
- 4 B.L. Valevsky, A.S. Skoropanov and A.A. Vecher, Sov. J. Phys. Chem., 57 (1983) 733.
- 5 I.A. Bulgak, A.S. Skoropanov, A.A. Vecher, G.A. Protsenko, Yu.N. Novikov and M.E. Vol'pin, Sov. Eng.-Phys. J., 46 (1984) 694.
- 6 B.L. Valevsky, A.A. Vecher, A.G. Gusakov, A.A. Koziro and A.S. Skoropanov, Sov. J. Phys. Chem., 57 (1983) 213.
- 7 A.S. Skoropanov, L.A. Mechkovsky, B.L. Valevsky and A.A. Vecher, Sov. J. Phys. Chem., 57 (1983) 1545.
- 8 A.A. Vecher, B.L. Valevsky, G.I. Samal and A.S. Skoropanov, Sov. Izv. Sib. Div. Acad. Sci., Chem., 14 (1982) 64.
- 9 P.P. Zhuk, L.A. Mechkovsky, A.S. Skoropanov and A.A. Vecher, Proc. 4th All-Union Conf. on Metal. Alloys Thermodynamics, Science Kaz. SSR, Alma-Ata, 1979, pp. 101–103.
- 10 S.A. Alfer, A.A. Vecher, O.A. Egorov and L.A. Mechkovsky, Sov. J. Phys. Chem., 55 (1981) 1613.
- 11 R.L. Sharkey, M.J. Pool and M. Hoch, Met. Trans., 2 (1971) 3039.
- 12 L.F. Kozin, Amalgam Pyrometallurgy, Science Kaz. SSR, Alma-Ata, 1973, p. 220.